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Abstract 

Background Cancer stem cells (CSCs) and long non-coding RNAs (lncRNAs) are known to play a crucial role 
in the growth, migration, recurrence, and drug resistance of tumor cells, particularly in triple-negative breast can-
cer (TNBC). This study aims to investigate stemness-related lncRNAs (SRlncRNAs) as potential prognostic indicators 
for TNBC patients.

Methods Utilizing RNA sequencing data and corresponding clinical information from the TCGA database, 
and employing Weighted Gene Co-expression Network Analysis (WGCNA) on TNBC mRNAsi sourced from an online 
database, stemness-related genes (SRGs) and SRlncRNAs were identified. A prognostic model was developed using 
univariate Cox and LASSO-Cox analysis based on SRlncRNAs. The performance of the model was evaluated using 
Kaplan–Meier analysis, ROC curves, and ROC-AUC. Additionally, the study delved into the underlying signaling path-
ways and immune status associated with the divergent prognoses of TNBC patients.

Results The research identified a signature of six SRlncRNAs (AC245100.6, LINC02511, AC092431.1, FRGCA, EMSLR, 
and MIR193BHG) for TNBC. Risk scores derived from this signature were found to correlate with the abundance 
of plasma cells. Furthermore, the nominated chemotherapy drugs for TNBC exhibited considerable variability 
between different risk score groups. RT-qPCR validation confirmed abnormal expression patterns of these SRlncRNAs 
in TNBC stem cells, affirming the potential of the SRlncRNAs signature as a prognostic biomarker.

Conclusion The identified signature not only demonstrates predictive power in terms of patient outcomes 
but also provides insights into the underlying biology, signaling pathways, and immune status associated with TNBC 
prognosis. The findings suggest the possibility of guiding personalized treatments, including immune checkpoint 

*Correspondence:
Jian Liu
Liujian_zZ@163.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-024-05237-0&domain=pdf
http://orcid.org/0000-0003-2434-103X


Page 2 of 21Zhang et al. Journal of Translational Medicine          (2024) 22:423 

gene therapy and chemotherapy strategies, based on the risk scores derived from the SRlncRNA signature. Overall, 
this research contributes valuable knowledge towards advancing precision medicine in the context of TNBC.

Keywords Triple-negative breast cancer, LncRNAs, Cancer stem cells, Prognostic model, Personalized treatment, 
Immune microenvironment

Introduction
Breast cancer stands as the foremost malignancy affect-
ing women, representing a significant threat to their 
well-being [1–4]. Within this realm, triple-negative 
breast cancer (TNBC) poses a distinct clinical challenge 
due to its unique molecular characteristics, marked 
by limited treatment options, dismal prognosis, and 
elevated mortality rates [5–7]. Hence, there arises an 
urgent imperative to direct attention towards targeted 
exploration and comprehensive mechanistic studies 
centered around key tumor makers in clinical settings. 
Cancer stem cells (CSCs), as tumor-initiating cells, play 
a pivotal role in TNBC’s pronounced heterogeneity, pro-
pensity for metastasis, and unfavorable prognosis. Con-
sequently, efforts aimed at targeting their development 
and unraveling their mechanisms emerge as focal points 
in the realms of TNBC diagnostics and therapeutic 
investigation [8–10].

Long non-coding RNAs (lncRNAs), despite their 
lack of coding capacity [11–14], play significant roles 
in various cellular processes, including the regulation 
of gene expression, facilitation of subcellular trans-
port, modulation of protein degradation, and promo-
tion of organelle biogenesis [15]. Research indicates 
that abnormal expression of lncRNAs significantly 
influences TNBC cell behavior, impacting prolifera-
tion, migration, metastasis, and tumorigenicity [16–18]. 
At the transcriptional level, lncRNA regulation of gene 
expression was investigated using data from The Can-
cer Genome Atlas (TCGA). The analysis revealed that 
the lncRNA MIR100HG was significantly overexpressed 
in TNBC but not in other cancer types. Furthermore, 
elevated levels of lncRNA MIR100HG in TNBC patients 
were correlated with a poor prognosis [19, 20]. At the 
post-transcriptional level, lncRNAs can regulate gene 
expression. In TNBC, high expression of lncRNAs can 
competitively bind with miRNAs, acting as sponges to 
suppress miRNA function and promote cancer progres-
sion [21]. LncRNAs also regulate protein stability at the 
post-transcriptional level, thereby promoting TNBC 
progression [22].

Current understanding suggests that lncRNAs play 
a crucial role in regulating numerous biological pro-
cesses of CSCs by modulating the expression of vital 
transcription factors responsible for stem cell functions 

[23], lncRNA involvement in cancer stem cell function 
and epithelial-mesenchymal transitions [24], LncRNA 
PKMYT1AR promotes cancer stem cell maintenance 
via activating Wnt signaling pathway [25], LncRNA 
LINC01315 silencing modulates cancer stem cell proper-
ties and epithelial-to-mesenchymal transition [26]. The 
study finding that LncRNA PART1 promotes prolifera-
tion and migration, is associated with CSCs, and alters 
the miRNA landscape in TNBC [27]; however, the role of 
stemness-related lncRNAs (SRlncRNAs) remains unclear 
in TNBC.

In this study, we employed WGCNA to examine the 
correlation between genes and mRNA expression levels, 
identifying stemness-related genes (SRGs). Consequently, 
we identified six SRlncRNAs and developed a prognos-
tic model. Subsequently, we conducted gene set enrich-
ment analysis (GSEA), immunoinfiltration analysis, and 
chemotherapy drug sensitivity analysis. Furthermore, we 
validated the predictive capacity of the model by induc-
ing stemness expression in vitro in triple-negative breast 
cancer cells. This comprehensive approach aimed to 
unravel the underlying mechanisms governed by SRlncR-
NAs in TNBC.

Materials and methods
The schematic diagram of this study is illustrated in 
Fig. 1.

Data acquisition
RNA sequencing data and corresponding clinical infor-
mation of BRCA patients were acquired from the TCGA 
database (https:// portal. gdc. cancer. gov) on July 25, 2023. 
Concurrently, mRNAsi data of BRCA were extracted 
from PanCanStemness Web portal (https:// bioin forma 
ticsf mrp. github. io/ PanCa nStem_ Web) [28]. In addition, 
we obtained phenotypic information of BRCA TCGA 
patients from Xena Functional Genomics Explorer 
(UCSC Xena) (https:// xena. ucsc. edu/). Ultimately, we 
filtered out 138 TNBC patients, with complete clinical 
data, matching RNA sequencing data and mRNAsi data, 
for subsequent analysis. Among them, 15 patients had 
corresponding RNA sequencing and mRNAsi data for 
non-tumor samples. Additionally, we extracted lncRNA 
expression profiles of TNBC patients in TCGA based on 

https://portal.gdc.cancer.gov
https://bioinformaticsfmrp.github.io/PanCanStem_Web
https://bioinformaticsfmrp.github.io/PanCanStem_Web
https://xena.ucsc.edu/


Page 3 of 21Zhang et al. Journal of Translational Medicine          (2024) 22:423  

the lncRNA annotation provided by the GENCODE pro-
ject [29, 30].

Differentially expressed genes (DEGs) analysis
To identify differentially expressed genes (DEGs) between 
non-tumor tissues and TNBC tissues, we employed the R 
package “limma” with criteria (|logFC|≥ 1.0 and adjusted 
P < 0.05) [31, 32].

Identification of target modules and SRGs through WGCNA
Target modules were identified through weighted gene 
co-expression network analysis (WGCNA) using The R 
package “WGCNA” [33]. WGCNA is a widely used bio-
informatics method in genomics and systems biology to 
identify patterns of gene expression and how these pat-
terns correlate with external traits or conditions, which 
is extensively used in cancer-related study [13]. Following 

Fig. 1 The flow chart of the study
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the filtration of RNA sequence data to mitigate outliers, a 
similarity matrix was incorporated. Subsequently, a scale-
free network was established by determining an opti-
mal soft power value (β = 4). The adjacency matrix was 
constructed through the following equation:  aij =|Sij|β 
(where  aijrepresents the adjacency matrix between gene 
i and gene j,  Sij denotes the similarity matrix obtained 
through Pearson correlation of all gene pairs, and β rep-
resents the soft power value) [34]. This matrix underwent 
transformation into a topological overlap matrix (TOM) 
along with its corresponding dissimilarity (1-TOM). Uti-
lizing the dissimilarity of TOM, we conducted hierar-
chical clustering with an average linkage approach. The 
stipulated minimum size for the gene tree diagram was 
set at 50, consolidating closely related genes into a sin-
gle module. Additionally, we designated mRNAsi and 
the epigenetic regulation of mRNAsi as clinical pheno-
types. Module eigengene (ME) exhibiting distinct expres-
sion patterns were chosen as principal components for 
modular gene expression principal component analysis 
(PCA) through feature gene network clustering. Gene 
significance (GS) was determined to elucidate the associ-
ation between genes and clinical phenotypes, calculated 
through the log10 transformation (GS = lgP) of linear 
regression p-values derived from gene expression and 
clinical phenotype data. The modular significance (MS) 
was defined as the mean value of GS. To enhance module 
capacity, a cut-off (< 0.25) was applied to minimize simi-
larities between modules. Finally, modules of interest, 
along with the gene membership degree (MM) represent-
ing the relationship between a module’s own genes and 
the gene expression profile, were selected. Specific crite-
ria included cor. gene MM > 0.7 and cor. gene |GS|> 0.5, 
serving as the cut-off values for identifying SRGs within a 
particular module.

Identification of SRlncRNAs and differential expression 
analysis
SRGs were identified, pearson correlation analysis 
(with a significance threshold of P < 0.001 and a correla-
tion coefficient magnitude of |R|> 0.4) was employed to 
ascertain the correlation between SRlncRNAs and SRGs, 
Therefore, we obtained SRlncRNAs. Following that, we 
employed the R package “limma” to identify differen-
tially expressed SRlncRNAs between non-tumor tissues 
and TNBC tissues, utilizing criteria of |logFC|≥ 1.0 and 
adjusted P < 0.05 [31].

Construction of the lncRNA‑mRNA co‑expression network
A lncRNA‒mRNA co-expression network was estab-
lished utilizing Cytoscape software (version 3.7.2, http:// 

www. cytos cape. org/) [12]. The network was constructed 
to enable an examination of the relationship between 
SRGs and SRlncRNAs with Pearson correlation coef-
ficients (with a significance threshold of P < 0.001 and 
|R|> 0.4).

Construction and validation of the SRlncRNAs prognostic 
signature
Based on TNBC patients data, we identified prognos-
tic lncRNAs using univariate cox regression analysis 
(P < 0.05). To mitigate overfitting of these SRlncRNAs, 
we performed least absolute shrinkage and selection 
operator (LASSO) regression for the selection of sig-
nificant lncRNAs. Following this, the prognostic model 
was constructed using multivariate cox regression anal-
ysis based on the Akaike Information Criteria (AIC) 
value after 1000  times cross validation. Six robust lncR-
NAs were ultimately selected for the construction of 
the optimal prognostic model. The risk score for TNBC 
patients was computed using the formula: risk score 
=

∑
n

i=1(expi ∗ βi) , where “Exp” denotes the transcrip-
tome expression value of each identified lncRNA, and “β” 
represents its corresponding coefficient. TNBC patients 
were stratified into low-risk and high-risk groups based 
on their median score. The performance of the signature 
was evaluated using various statistical methods, includ-
ing Kaplan‒Meier (KM) survival analysis with the log-
rank test using the R packages “survminer” and “survival” 
to assess overall survival (OS) between the two groups. 
The predictive power of the model was further assessed 
by the area under the ROC curve (ROC-AUC) using the 
R package “timeROC” [35]. The distribution of expres-
sion patterns among the two groups was examined 
through Principal Component Analysis (PCA). Addition-
ally, Univariate and multivariate Cox regression analysis 
were employed to investigate whether the SRlncRNAs 
signature can serve as an independent prognostic factor 
in TNBC patients. The predictive accuracy for survival 
time considering various clinical pathological factors 
and risk scores was assessed through the receiver oper-
ating characteristic (ROC) curve, using the R package 
“timeROC” [35]. To facilitate clinical decision-making, a 
nomogram was constructed incorporating risk score and 
other relevant clinical factors, serving as a quantitative 
tool for the evaluation of clinical outcomes.

Gene set enrichment analysis (GSEA)
The potential distinctions in biological processes 
between high and low-risk groups were investigated 
through GSEA utilizing the R package “clusterProfiler” 
with GSEA v4.2.3 software. The gene set annotation 
C2.cp.kegg.v2023.1.Hs.symbols.gmt was chosen as the 

http://www.cytoscape.org/
http://www.cytoscape.org/
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reference gene set. A significance threshold of P < 0.05 
was considered as statistically significant parameters.

Assessment of immune infiltration and microenvironment
To explore immune microenvironment in TNBC 
patients, differences in immune cell infiltration between 
the two subgroups were evaluated using the CIBERSORT 
algorithm [36, 37]. The CIBERSORT algorithm is a com-
putational tool designed for characterizing the composi-
tion of immune cell populations within complex tissues 
based on gene expression profiles. The online analysis 
platform was employed to quantify the relative abun-
dance of 22 immune cell types (including seven T cell 
types, naive and memory B cells, plasma cells, and NK 
cells) in TNBC. Simultaneously, we conducted a single-
sample Gene Set Enrichment Analysis (ssGSEA) using 
the R package “gsva” to assess immune-related pathways 
in both groups [38]. Subsequently, the TIDE algorithm 
was employed to investigate inhibitors in the immune 
checkpoint response for TNBC patients (P < 0.05) [39].

Exploration of chemotherapy effect based 
on the SRlncRNAs signature
Our research focused on improving the operating system 
in patients with TNBC by employing chemotherapy. Our 
specific objective was to formulate personalized treat-
ment plans based on risk scores. The half-maximal inhib-
itory concentration (IC50) characterizes the response of 
each patient to chemotherapy, as determined using the R 
package “pRRophetic”, which leverages the Genomics of 
Drug Sensitivity in Cancer dataset for estimation [40].

Cell cultures and induction of TNBCSCs
The TNBC cell line (MDA-MB-231) was procured from 
the Shanghai Cell Bank at the Academy of Sciences 
(China). The culture conditions of MDA-MB-231 were 
dulbecco’s modified eagle medium (DMEM; Gibco, 
Carlsbad, CA, USA), supplemented with 10% fetal 
bovine serum (FBS) (Gibco) and 1% penicillin–strepto-
mycin (Gibco), in a humidified incubator at 37  °C with 
5% CO2. To ensure optimal cell growth and to prevent 
over-confluency, we conducted our experiments before 
primary cell line passages reached 40 doublings. Subse-
quently, enzymatic digestion was employed to convert 
well-adhered MDA-MB-231 cells in a robust growth state 
into a single-cell suspension using pancreatin. The super-
natant was discarded after centrifugation. The cells were 
resuspended in a specific medium based on DMEM/F12 
(1:1) media (C11330500CP, Gibco), which was supple-
mented with 0.4% BSA, 20  ng/ml EGF, 10  ng/ml bFGF, 
and 5  μg/ml recombinant human insulin, then Cells 
(1*105 per well) are grown in 6-well low adsorption cul-
ture  plate. The resuspended cells were then cultured in 

a CO2-regulated incubator at 37  °C for 7–10 days, with 
the addition of 500 μl specific medium every other day. 
Throughout this cultivation period, the induction of 
sphere formation was observed under a microscope, and 
images were captured. The growth of cells in suspended 
spherical aggregates were identified as triple-negative 
breast cancer stem cells (TNBCSCs). Every condition was 
measured three times. Additional MDA-MB-231 cells 
(1*10^5 per well) were seeded as a control in a standard 
6-well plate and cultured in a complete medium (DMEM 
supplemented with 10% FBS and 1% penicillin–strepto-
mycin). In the logarithmic growth phase, MDA-MB-231 
adherent cells were cultured and conventionally digested 
at 1000 rpm for 5 min. Following centrifugation, the cells 
were resuspended in complete culture medium, and the 
cell density was adjusted to 1 × 10^5 cells/mL, result-
ing in a single-cell suspension. Subsequently, the cells 
were seeded into a 6-well plate, with each well receiving 
2.5  mL of the single-cell suspension. This process was 
replicated for each of the three samples. The plate was 
then placed in a 37  °C incubator with 5% CO2 and left 
overnight. After the cells adhered to the surface, culture 
medium was added, and further incubation occurred for 
an additional 5 days.

Identification of TNBCSCs
To determine whether TNBCSCs exhibit stem cell-like 
characteristics, the identification involves observing cell 
morphology and conducting flow cytometry analysis for 
the positivity rate of  CD44+/CD24− cells [41].

Assessment of the expression of CD44 and CD24 using 
a flow cytometer
Following the incubation period, cells were collected into 
EP tubes, appropriately labeled, centrifuged at 1000 rpm 
for 5  min, with the supernatant being discarded. The 
cells were washed twice with PBS, centrifuged again at 
1000  rpm for 5  min, and resuspended in 500  uL PBS. 
CD44- FITC and CD24-APC labeling were performed 
on the resuspended cells. Following a 20 min incubation 
in the dark at room temperature, 1 mL PBS was added, 
and the cells were centrifuged at 1000 rpm for 5 min. The 
supernatant was discarded, and 200  µL PBS was added 
for resuspension. Subsequently, flow cytometry was 
employed to detect the expression of CD44 and CD24.

Quantitative real‑time polymerase chain reaction 
(RT‑qPCR)
Total RNA was extracted from cells utilizing MagZol rea-
gent (Magen, Guangzhou, China, cat. No. R4801-01) in 
accordance with the manufacturer’s instructions. Sub-
sequently, complementary DNA (cDNA) was synthe-
sized through reverse transcription of messenger RNA 
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(mRNA) using the Yeasen  Hifair® III 1st Strand cDNA 
Synthesis SuperMix for qPCR (gDNA digester plus), 
cat. No.11141ES10. The Quantitative Polymerase Chain 
Reaction (qPCR) was carried out using 2 × SYBR Green 
qPCR Master Mix (Low ROX) (Bimake, cat. No. B21702). 
The standardized conditions for the PCR amplification 
reactions were as follows: an initial denaturation at  95 ℃ 
for 10 min, followed by 40 cycles of denaturation at 95 ℃ 
for 10 s and annealing at 60 ℃ for 30 s. Subsequently, a 
final extension step was performed at 95 ℃ for 15 s, fol-
lowed by an annealing step at 60 ℃ for 60  s and a final 
extension at 95 ℃ for 15 s. The specific primer sequences 
employed for the target genes, as well as the reference 
gene (GAPDH), are detailed in Table  1. The relative 

quantification method  (2−ΔΔCt) was applied to assess the 
relative expression of lncRNA.

siRNA
siRNAs were purchased from Sangon Biotech. Transfec-
tion of siRNA was carried out according to the manu-
facturer’s protocol. Briefly, cells in exponential phase 
of growth were plated in six-well low adsorption tissue 
culture plates at 1 ×  105 cells per well, grown for 96  h, 
and then transfected with siRNA using lipofectamine 
RNAimax reagent and DMEM/F12 reduced serum 
medium. The siRNA sequences were showed in Table 2.

Statistical analysis
All statistical analysis were conducted using R software 
(version 4.13). The Wilcoxon test was applied to com-
pare the proportional differences in immune-infiltrated 
cells within the tumor. Pearson correlation analysis was 
employed to discern relationships between distinct vari-
ables. For survival analysis, the Kaplan–Meier (KM) 
method was utilized. Univariate and multivariate cox 
regression analysis were performed to examine significant 
prognostic factors and their independence. The Receiver 
Operating Characteristic (ROC) curve was employed to 
evaluate the robustness of the prognostic model for over-
all survival (OS). Statistical significance was considered 
when P < 0.05, and specific levels of significance were 
denoted as follows: *P < 0.05, **P < 0.01, ***P < 0.001, and 
****P < 0.0001 unless otherwise indicated.

Results
mRNAsi and clinical characteristics in TNBC
We acquired mRNAsi data of 138 TNBC patients from 
the PanCanStemness Web portal. Subsequently, we 

Table 1 Sequences of the primers used in RT-qPCR

LncRNA Sequence

GAPDH Forward primer CAA CGG ATT TGG TCG TAT TGG 

Reverse primer TGA CGG TGC CAT GGA ATT T

AC245100.6 Forward primer CAG TTC TGG AGT TTG GAA GTC TAA GG

Reverse primer GAT ACA GTA GGA AGA TGG CAG TCT ATG 

LINC02511 Forward primer GCA ATG GAT GTC GGA GCA GAAG 

Reverse primer ATG GAA AGG CAC TGA AAG GTC TTG 

AC092431.1 Forward primer CAA TGG AAG GAT GGA TGA GGA ACC 

Reverse primer GCA ACA CAC AAC CCG TAA CAT AAC 

FRGCA Forward primer CCT CCA GTT TCC TCC CAC ATCC 

Reverse primer CCA CAC TCA CTC GGA CTA GGC 

EMSLR Forward primer CTC AAT GGA AGG ACA CGG GAAAC 

Reverse primer GGA TCT GTT GCT GGA GAA TTA CTG G

MIR193BHG Forward primer CCC AGC CAG GTT CAG ATT TCA TAG 

Reverse primer CAC TGC TCT GTT CCT TGC TTCTC 

Table 2 The siRNA sequences of 6 SRlncRNAs

SiLncRNA Sequence (5′–3′)

Sense Antisense

SiAC245100.6 1 AGC CUG UUU ACG AUA UUG U ACA AUA UCG UAA ACA GGC U

2 AGG UUU CAA GAU CUA AAG U ACU UUA GAU CUU GAA ACC U

SiLINC02511 1 UGG AAC AAU GUC UAA CAC GUG UUA GAC AUU GUU CCA G

2 GGG CUA GAU UUG GUG ACU A UAG UCA CCA AAU CUA GCC 

SiAC092431.1 1 AUC CGA CAU UUU UAA UUU U AAA AUU AAA AAU GUC GGA U

2 AAG UUU AAA AUA AAA AUG U ACA UUU UAU UUU AAA CUU 

SiFRGCA 1 AAG UUG GAA AAU GAA UGA A UUC AUU CAU UUU CCA ACU U

2 AUG AAU AUA AAU UAU CAA A UUU GAU AAU UUA UAU UCA U

SiEMSLR 1 UUG GAA GAA GCA AUU UAC A UGU AAA UUG CUU CUU CCA A

2 UAG AGA AUU GUG GAA ACU G CAG UUU CCA CAA UUC UCU A

SiMIR193BHG 1 GUG CAG AUA UAG ACC AUU U AAA UGG UCU AUA UCU GCA C

2 UUG AGU AUU AGG CUG AUG U ACA UCA GCC UAA UAC UCA A
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conducted a comparative analysis of the mRNAsi index 
between tumor and non-tumor samples, examining vari-
ous clinicopathological parameters. Our findings revealed 

a statistically significant elevation in mRNAsi levels in 
tumor tissues in comparison to normal tissues (Fig. 2A). 
Moreover, with respect to demographic characteristic, 

Fig. 2 Correlation between mRNAsi and clinical characteristics in TNBC. A Differences in mRNAsi between nontumor samples and TNBC tissues. 
Comparison between mRNAsi expression level and clinical characteristics in HNSCC, including age (B), T classification (C), N classification (D), M 
classification (E) and tumor stage (F). G Kaplan–Meier curves for TNBC according to mRNAsi. (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns, 
no significance). TNBC triple-negative breast cancer
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we categorized 138 TNBC patients based on age, gen-
der and tumor stage. Notably, except for T classification 
and stage, where a statistically significant association was 
observed (P < 0.001) (Fig.  2C, F), there was no discern-
ible correlation between mRNAsi and age (P = 0.405) 
(Fig. 2B), N classification (P = 0.657) (Fig. 2E), or M clas-
sification (P = 0.976) (Fig.  2E). While mRNAsi deter-
mined by Kaplan–Meier (KM) analysis did not exhibit 
a significant statistical difference (P = 0.073 > 0.05), the 
sufficiently small P-value leaded us to consider that a 
higher mRNAsi index was associated with poorer overall 
survival (OS) for TNBC patients (Fig. 2F). The preceding 
findings suggest that the mRNAsi index may have a dis-
cernible impact on the regulation of TNBC.

Identification of SRGs
Utilizing RNA sequencing data extracted from the TCGA 
database, we conducted a screening of DEGs between 
TNBC tissues and non-tumor tissues. Applying a cutoff 
value (|logFC|≥ 1.0 and adjusted P < 0.05), we identified 
6629 DEGs, of which 2605 were up-regulated and 4024 
were down-regulated genes (Fig.  3A). Subsequently, we 
employed WGCNA with a soft threshold (β = 4) to estab-
lish a scale-free network, allowing the correlation analy-
sis between mRNAsi and the 6629 DEGs in TNBC tissues 
and non-tumor tissues of the TCGA database. This anal-
ysis revealed 32 modules for further investigation 
(Fig. 3B). Figure 3C illustrated the statistical methodology 
employed for identifying modules closely associated with 
the mRNAsi index. WGCNA results depicted the cor-
relation level  (R2 value) between TNBC gene expression 
and the mRNAsi index in each module. Consequently, 
we selected ten modules (MEcyan, MEbule, MEsaddle-
brown, MEmidnightblue, MEgreenyellow, MEsalmon, 
MEbrow, MEred, MEturquoise and MEgreen modules) 
(P < 0.05) as the primary focus for subsequent studies 
(Fig.  3D–M). Finally, applying a threshold of |GS|> 0.5 
and MM > 0.7, we identified 119 SRGs in these modules.

Identification of prognostic SRlncRNAs
Utilizing clinicopathological data, RNA sequencing data, 
retrieved from the TCGA database for 138 TNBC patients, 
we identified a total of 16,876 lncRNAs and 19,938 
mRNAs. Conducting Pearson correlation analysis between 
lncRNAs and 119 SRGs (P < 0.001 and |R|> 0.4), we derived 
1982 SRlncRNAs. Subsequently, we established a co-
expression network illustrating the relationships between 
119 SRGs and 1982 SRlncRNAs (Fig. 4A). We performed 
differential analysis on these obtained SRlncRNAs, and We 
obtained 922 differentially expressed SRlncRNAs, which 
are considered potential prognostic SRlncRNAs.

Construction and validation of the SRlncRNAs signature
Based on the results of univariate Cox regression analy-
sis, 23 SRlncRNAs were identified as being associated 
with overall survival (OS), as depicted in the forest plot 
and heatmap (Fig.  4C, D). All of these 23 SRlncRNAs 
were deemed closely linked to the unfavorable prog-
nosis of TNBC patients based on a Hazard Ratio (HR) 
greater than 1. In order to mitigate multicollinearity, 
lasso regression analysis was employed to analyze 23 SRl-
ncRNAs, during 1000  times cross validation, the least 
AIC score facilitated the identification of the optimal 
lncRNAs signature, we ultimately identified six SRlncR-
NAs (AC245100.6, LINC02511, AC092431.1, FRGCA, 
EMSLR and MIR193BHG) to establish the prognostic 
model according to the AIC value (AIC = 127.91). Fig-
ure 4E, F presented the cvfit and lambda curves, respec-
tively. Subsequently, the risk score of TNBC patients  
was computed utilizing the following formula: Risk 
score = AC245100.6 * 0.58910 + LINC02511 * 0.81093 +  
AC092431.1 * 1.83066 + FRGCA * 0.67583 + EMSLR * 
1.07227 + MIR193BHG * 0.68825.

Next, the prognostic accuracy of the model was evalu-
ated. The risk scores for each individual in the TNBC 
cohort were computed using a designated formula and 
organized in ascending order. Subsequently, individu-
als in the TNBC cohort were categorically assigned to 
two distinct groups, namely the high-risk and low-risk 
groups, based on whether their scores were above or 
below the median values. The survival outcomes, risk 
status and lncRNA expression levels of all patients were 
illustrated in Fig.  5A–C. The outcomes derived from 
the Kaplan–Meier (KM) survival analysis revealed that 
TNBC patients exhibited a diminished survival duration 
in the high-risk group (Fig.  5D), which suggested that 
TNBC patients experienced a more favorable prognosis 
in the low-risk group. An ROC curve was constructed to 
compute AUC for the risk score. The findings indicated 
that the AUC values for the risk score at 3, 5, and 8 years 
were 0.877, 0.893, and 0.924, respectively (Fig. 5E). PCA 
was employed to discern distinctions between the two 
subgroups, utilizing all genes, 119 SRGs, 1982 SRlncR-
NAs, and the 6-SRlncRNAs signature (Fig.  5F–I). The 
PCA outcomes revealed that, particularly in the analysis 
of the 6-SRlncRNAs signature (Fig. 5I), both the low and 
high-risk groups exhibited more pronounced divergence 
in distinct directions compared to the other analysis 
(Fig. 5F–H). These findings suggested that the risk model 
effectively stratified TNBC patients into two groups (low 
and high-risk), demonstrating a complete separation in 
their stemness status.
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Fig. 3 Identification of DEGs and stemness-related key modules in TNBC. A the volcano plot of DEGs in the TCGA database. B DEGs were clustered 
into different colors modules. C correlation between modules and mRNAsi according to Pearson correlation. D–M Scatter plot of module 
eigengenes in the MEcyan, MEbule, MEsaddlebrown, MEmidnightblue, MEgreenyellow, MEsalmon, MEbrow, MEred, MEturquoise and MEgreen 
modules. TNBC triple-negative breast cancer, DEGs Differentially expressed genes
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Construction and verification of a nomogram in TNBC 
patients
The predictive specificity and sensitivity of risk scores 
for TNBC patients at 3, 5, and 8 years were subsequently 
assessed using the AUC. The results indicated that the 
AUC values for the risk scores all surpassed those of other 
clinicopathological factors (the AUC of 3 year: 0.877; the 
AUC of 5  year: AUC = 0.893; the AUC of 8  year: 0.924) 
(Fig. 6A–C). To ascertain whether the risk score can be 
considered an independent prognostic factor influencing 
the outcomes of TNBC patients, we incorporated clinical 
factors into both univariate and multivariate cox regres-
sion analysis. Univariate cox regression analysis revealed 
that stage (HR, 4.408; CI 1.946–9.985; P < 0.001), M (HR, 
33.309; CI 2.948–376.409; P = 0.005), N (HR, 3.200; CI 
1.845–5.551; P < 0.001) and risk score (HR, 1.107; CI 
1.067–1.147; P < 0.001) exhibited significant associa-
tions with overall survival (OS) (Fig.  6D). Multivariate 
cox regression analysis demonstrated that N (HR, 3.587; 
CI 1.069–12.652; P = 0.047) and risk score (HR, 1.123; 
CI 1.069–1.180; P < 0.001) independently predicted OS 
in TNBC patients (Fig.  6E). subsequently, a prognostic 

nomogram was executed to evaluate the prognostic 
outcomes of patients diagnosed with TNBC at 1, 3, and 
5  years post-diagnosis in the clinical setting (Fig.  7A). 
Following this, the calibration curves demonstrated satis-
factory calibration (Fig. 7B).

Gene set enrichment analysis (GSEA)
The variation in signaling pathways between the low-risk 
and high-risk groups was scrutinized through GSEA. 
The GSEA results unveiled that in the high-risk group, 
among 178 signaling pathways, a total of 158 exhibited 
upregulation. Notably, six signaling pathways, includ-
ing inositol phosphate metabolism, phosphatidylinositol 
signaling system, lysine degradation, tight junction, basal 
transcription factors and ether lipid metabolism, demon-
strated significant enrichment at a nominal significance 
threshold (P < 0.05) (Fig.  8). In contrast, in the low-risk 
group, among the same 178 signaling pathways, only 20 
displayed upregulation, and no pathways demonstrated 
significant enrichment at a similar nominal significance 
level (P < 0.05).

Fig. 4 Identification of stemness-related lncRNAs signature in TNBC. A The network of SRGs and SRlncRNAs. B the volcano plot of SRlncRNAs. C The 
forest plot of prognostic-related SRlncRNAs. D Heatmap of prognostic-related SRlncRNAs. E LASSO coefficient profiles of SRlncRNAs. F The partial 
likelihood deviance with changing of log(λ). (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns, no significance). TNBC triple-negative breast 
cancer, SRGs stemness-related genes, SRlncRNAs stemness-related lncRNAs
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The immune cells infiltration landscape in TNBC patients
Immune cells play a crucial role in both tumor forma-
tion and prognosis. In our exploration of immune cell 
infiltration patterns in TNBC patients in the TCGA 
cohort, we analyzed the data derived from the TCGA 
database. Our assessment revealed substantial vari-
ations in the distribution of 22 distinct immune cell 
types in the tumor tissues of TNBC patients (Fig. 9A). 
Furthermore, we conducted an analysis to elucidate 
the correlations between infiltrating immune cells in 
TNBC patients. Notably, activated natural killer (NK) 
cells exhibited positive correlations with resting mast 
cells, regulatory T cells (Tregs), resting dendritic cells, 
memory B cells, eosinophils, CD8 + T cells, T folli-
cular helper cells, M0 macrophages, and neutrophils 
(Fig.  9B). Upon comparing immune cell proportions 
across different risk groups, we observed that the low-
risk group displayed elevated levels of plasma cells 
(Fig. 9C).

Next, we assessed variations in the enrichment levels 
of 13 pathways related to immune function between the 
aforementioned groups. Notably, a predominant focus 
was observed in cytolytic activity, which contributes 
to inflammation (Fig.  10A). Additionally, we exam-
ined alterations in the expression of common immune 
checkpoint genes within these groups. The results indi-
cated significant differences in 11 immune checkpoint 
genes (BRAF, ALK, CD276, CD160, TNFSF9, EGFR, 
CD80, DDR1, ARIH1, TNFSF25, and KRAS) between 
the two groups (Fig. 10B).

Sensitivity assessment of common chemotherapeutic 
drugs
It is widely acknowledged that cisplatin, docetaxel, 
paclitaxel, and erlotinib are among the most commonly 
prescribed chemotherapy drugs for TNBC patients 
[42]. Consequently, through an analysis of the correla-
tion between the risk score and the efficacy of these 
extensively recognized anticancer medications, it was 

Fig. 5 A risk model for outcome prediction. A The distribution of the risk scores for each patient. B the distributions of the overall survival status 
for every patient. C The heatmap of 6 SRlncRNAs expression. D Kaplan–Meier curves for the overall survival of patients in the high- and low-risk 
groups. E Accuracy of the risk signature in predicting 3-, 5-, and 8-year ROC curves. F PCA of all examined genes expression. G PCA of all 
SRGs expression. H PCA of SRlncRNAs expression. I PCA of the prognostic 6 SRlncRNAs signature. TNBC triple-negative breast cancer, SRGs 
stemness-related genes, SRlncRNAs stemness-related lncRNAs, PCA Principal components analysis
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observed that individuals in the low-risk group exhibited 
heightened sensitivity to cisplatin (Fig.  11). This find-
ing held potential significance for tailoring personalized 
therapeutic approaches for TNBC patients.

Identification of induced stemness in TNBC CSCs
The findings from inverted phase-contrast microscopy 
revealed that initially induced MDA-MB-231 cells by 
stem cells displayed a single, rounded cell state sus-
pended within the culture medium. After 1–2  days, 
several cells gradually aggregated into loosely clus-
tered structures resembling bead-like formations. By 
day 5, these structures gradually transformed into more 
regularly shaped grape-like cell clusters, with clearer 
cell structures and strong translucency. Between 5 and 
10  days, cells proliferated rapidly, and the cell clusters 
progressively enlarged. The boundaries between cells 
became blurred or covered by newly proliferated cells, 
forming a more densely organized, round or ellipti-
cal three-dimensional structure with poor translucency 

(Fig.  12A). The flow cytometry results demonstrated 
that, following serum-free suspension culture, stem cell 
marker in ovarian cancer cells was induced. The propor-
tion of  CD44+CD24− cells in MDA-MB-231 cells was 
(46.23 ± 0.34) %, whereas the proportion of  CD44+CD24− 
cells in TNBC stem cells was (61.33 ± 1.80) %. The differ-
ence was statistically significant (P < 0.05) (Fig. 12B).

Investigation of in vitro alterations in 6 SRlncRNAs
Expression levels of 6 SRlncRNAs were separately exam-
ined in MDA-MB-231 cells and MDA-MB-231 stem 
cells using RT-qPCR. The results revealed a significant 
increase in the expression of AC245100.6, LINC02511, 
AC092431.1, FRGCA, EMSLR and MIR193BHG in the 
MDA-MB-231 stem cell group compared to the MDA-
MB-231 (P < 0.05) (Fig.  12C). In addition, when silent 
six SRlncRNAs, we observed a statistically significant 
decrease in relative MDA-MB-231 stem cell numbers 
(P < 0.05) (Fig. 12E, F).

Fig. 6 The prognosis value of the novel SRlncRNAs signature. A The ROC curves of risk score and clinical characteristics at 3-year. B The ROC curves 
of risk score and clinical characteristics at 5-year. C The ROC curves of risk score and clinical characteristics at 8-year. D The result of univariate Cox 
regression analysis. E The result of multiple Cox regression analysis. SRlncRNAs stemness-related lncRNAs
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Fig. 7 Construction and verification of the nomogram in TNBC. A A nomogram combining clinicopathological variables and risk score predicts 
the 1-, 3-, and 5- year overall survival. B The calibration curves for 1‐, 3‐, and 5‐year OS. (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns, 
no significance). TNBC triple-negative breast cancer
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Discussion
TNBC represents an exceptionally aggressive subtype 
distinguished by the lack of expression of the ER, PR 
and HER2 [43]. The molecular heterogeneity of TNBC 
poses challenges in treatment strategies. Tumor hetero-
geneity is partly derived from the presence and activity 
of CSCs [44]. In the realm of tumorigenesis, metasta-
sis, and post-treatment relapse, CSCs, constituting 
a minority subset within the tumor cell population, 
emerge as pivotal contributors, and abundant evidence 
attests to the paramount role played by CSCs in insti-
gating chemoresistance to chemotherapy and the sub-
sequent resurgence in various types of cancer, including 
breast cancer [44–47]. The malignant characteristics 
of tumors are functionally associated with the expres-
sion of stem cell markers and CSCs-specific transcrip-
tional patterns, and these molecular signatures exhibit 
a high prognostic value for overall patient survival [48]. 
Numerous reports have documented the use of SRGs 
as prognostic markers [49]. Nevertheless, a notable 

research gap exists in the exploration of lncRNAs based 
on stemness in TNBC. The identification of novel bio-
markers and the pursuit of more efficacious therapeutic 
targets in TNBC remain imperative and warranted.

We explored the clinical significance of mRNAsi in 
predicting the prognosis of TNBC. Our investigation 
revealed a significantly elevated mRNAsi in TNBC tis-
sues. Furthermore, Kaplan–Meier survival analysis 
demonstrated that lower mRNAsi was associated with a 
more favorable survival prognosis. Our findings aligned 
with previously reported results in the literature [50]. 
These findings implied that stemness played a crucial 
role in TNBC.

Utilizing paired clinical data, corresponding RNA-Seq 
data, and mRNA-based stemness index (mRNAsi) from 
138 TNBC patients, we identified 119 SRGs. Follow-
ing a comprehensive analysis, we further pinpointed 6 
resilient predictive lncRNAs (AC245100.6, LINC02511, 
AC092431.1, FRGCA, EMSLR, and MIR193BHG) to 
formulate a prognostic model, and the model effectively 

Fig. 8 Gene set enrichment analysis (GSEA) of the high- and low-risk groups based on the prognostic model. A–F The significantly enriched KEGG 
pathways in the high-risk group
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stratified TNBC patients into low-risk and high-risk 
groups. The high-risk group exhibited poorer overall 
survival, indicating the potential of SRlncRNAs as prog-
nostic markers. The signature’s robustness was validated 
through various statistical methods, including Kaplan–
Meier survival analysis and receiver operating character-
istic (ROC) curve analysis.

Some reasons might be attributed to distinct underly-
ing mechanisms among various subtypes of risk scores. 
In our quest to unravel potential mechanisms, we con-
ducted GSEA, the result revealed the activation of 
numerous signaling pathways associated with tumo-
rigenesis, including inositol phosphate metabolism, 
phosphatidylinositol signaling system, lysine degrada-
tion, tight junction, basal transcription factors and ether 
lipid metabolism were enriched in the high-risk group. 
Moreover, to explored the immune microenvironment 
in TNBC, we assessed the variations in the distribution 
of 22 distinct immune cell types between the two groups, 

the result showed plasma cells was notably higher in the 
low-risk group compared to the high-risk group. Com-
mon knowledge dictated that the ability of plasma cells to 
generate specific antibodies provided the immune system 
with a targeted defense mechanism against a wide range 
of antigens and plasma cells played a vital role in main-
taining immune system function and overall health [51]. 
Those phenomenons listed above may help to explore the 
disparity in prognosis between the two groups. And these 
findings also suggested that SRlncRNAs might influ-
ence critical cellular processes contributing to TNBC 
progression.

In order to investigate potential novel personal-
ized therapeutic approaches for TNBC, we assessed 
the expression of immune checkpoint genes and 
identified differences between the two risk groups. 
We found immune checkpoint genes (BRAF, ALK, 
CD276, CD160, TNFSF9, EGFR, CD80, DDR1, ARIH1, 
TNFSF25, and KRAS) were up-regulated in the 

Fig. 9 Analysis of the immune cell infiltration landscape in TNBC patients calculated by CIBERSORT. A The proportions of 22 tumor infiltrating 
immune cells in individual TNBC patients. B Correlations among immune cells in TNBC patients. C Violin diagram showing the immune cell 
composition of different groups. (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns, no significance). TNBC triple-negative breast cancer
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high-risk group, which indicated that treatment with 
anti- immune checkpoint genes therapy may be benefi-
cial for TNBC patients. Furthermore, various computa-
tional methods have been applied to drug screening for 
multiple diseases [52–55], our research investigated the 
sensitivity of TNBC patients to common chemothera-
peutic drugs. The low-risk group showed heightened 
sensitivity to cisplatin, suggesting that the SRlncRNA 
signature could aid in personalized treatment planning 
for TNBC patients.

In vitro experiments induced stemness in TNBC 
stem cells, confirming the stem cell-like character-
istics of the identified SRlncRNAs. The expression 
of these SRlncRNAs was significantly increased in 
TNBC stem cells compared to non-stem TNBC cells, 
while the proportion of stem cells in TNBC stem 
cells with silenced SRlncRNAs decreased, suggesting 
that these lncRNAs might play key roles in TNBC. At 

present, there are no relevant reports on the biological 
research of lncRNA AC245100.6, lncRNA LINC02511 
and lncRNA AC092431.1. Liao et  al., reported that 
lncRNA FRGCA was highly expressed in colon adeno-
carcinoma and correlated with poor prognosis [56]. 
Hegre, S et  al., reported that an oncogenic role of 
EMSLR, possibly by interfering with the progression 
from G1 to the S phase of the cell cycle [57]. Zhou 
et  al., reported that MIR193BHG was one of the six 
pyroptosis-related lncRNAs prognostic signature for 
renal clear cell cancer prognosis prediction [58]. How-
ever, the roles of these six SRlncRNAs had not been 
reported in TNBC, the specific stem cell-like charac-
teristics of 6 lncRNAs in TNBC merit further inves-
tigation, paving the way for future exploration in our 
research endeavors.

However, our study has several limitations. Firstly, 
reliance on the TCGA database for our analysis, despite 

Fig. 10 Immunity correlation analysis of the risk score in TNBC patients based on the ssGSEA scores. A Immune functional differences 
between the low-risk and high-risk groups. B The difference of common immune checkpoints expression in the two groups. (* p < 0.05, ** p < 0.01, 
*** p < 0.001, **** p < 0.0001, ns, no significance). TNBC triple-negative breast cancer
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a substantial sample of TNBC patients, would benefit 
from additional external validation cohorts for more 
robust analyses. Finally, the biological mechanisms of 
SRlncRNAs remain unclear, as no cell or animal experi-
ments have been conducted; therefore, future studies 
will include in vitro and in vivo investigations to eluci-
date these mechanisms.

Conclusion
Our study provided insights into the potential roles of 
SRlncRNAs in TNBC, offering a novel prognostic sig-
nature and highlighting their association with immune 
responses and chemotherapy sensitivity. Further vali-
dation and functional studies are warranted to fully 
elucidate the mechanisms underlying SRlncRNAs in 

Fig. 11 The chemotherapeutic responses of the two groups to four common anticancer drugs. A Cisplatin. B Docetaxel. C Eriotinib. D Paclitaxel

(See figure on next page.)
Fig. 12 Identification of TNBCSCs and the qRT-PCR results of these SRlncRNAs relative expressing levels in in vitro. A The morphological changes 
of MDA-MB-231 cells following induction of stemness. B Flow cytometry results about the proportion of CD44 + CD24- cells between the control 
group and TNBCSCs. C The statistical analysis results of flow cytometry outcomes between the control group and the TNBCSCs group (D) 
the qRT-PCR results of these SRlncRNAs in TNBCSCs. E Flow cytometry results about the proportion of CD44 + CD24- cells between the TNBCSCs 
control group and the TNBCSCs group respectively silenced target lncRNA. F The statistical analysis results of flow cytometry outcomes 
between the TNBCSCs control group and the TNBCSCs group respectively silenced target lncRNA. (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, 
ns, no significance). TNBCSCs triple-negative breast cancer stem cells
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Fig. 12 (See legend on previous page.)
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TNBC, paving the way for personalized therapeutic 
interventions.
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